一致性协议:2PC和3PC(二阶段提交和三阶段提交两种协议)

分布式一致性回顾

在分布式系统中,为了保证数据的高可用,通常,我们会将数据保留多个副本(replica),这些副本会放置在不同的物理的机器上。为了对用户提供正确的增\删\改\差等语义,我们需要保证这些放置在不同物理机器上的副本是一致的。

为了解决这种分布式一致性问题,前人在性能和数据一致性的反反复复权衡过程中总结了许多典型的协议和算法。其中比较著名的有二阶提交协议(Two Phase Commitment Protocol)、三阶提交协议(Three Phase Commitment Protocol)和Paxos算法

分布式事务

分布式事务是指会涉及到操作多个数据库的事务。其实就是将对同一库事务的概念扩大到了对多个库的事务。目的是为了保证分布式系统中的数据一致性。分布式事务处理的关键是必须有一种方法可以知道事务在任何地方所做的所有动作,提交或回滚事务的决定必须产生统一的结果(全部提交或全部回滚)

在分布式系统中,各个节点之间在物理上相互独立,通过网络进行沟通和协调。由于存在事务机制,可以保证每个独立节点上的数据操作可以满足ACID。但是,相互独立的节点之间无法准确的知道其他节点中的事务执行情况。所以从理论上讲,两台机器理论上无法达到一致的状态。如果想让分布式部署的多台机器中的数据保持一致性,那么就要保证在所有节点的数据写操作,要不全部都执行,要么全部的都不执行。但是,一台机器在执行本地事务的时候无法知道其他机器中的本地事务的执行结果。所以他也就不知道本次事务到底应该commit还是 roolback。所以,常规的解决办法就是引入一个“协调者”的组件来统一调度所有分布式节点的执行。

XA规范

X/Open 组织(即现在的 Open Group )定义了分布式事务处理模型。 X/Open DTP 模型( 1994 )包括应用程序( AP )、事务管理器( TM )、资源管理器( RM )、通信资源管理器( CRM )四部分。一般,常见的事务管理器( TM )是交易中间件,常见的资源管理器( RM )是数据库,常见的通信资源管理器( CRM )是消息中间件。 通常把一个数据库内部的事务处理,如对多个表的操作,作为本地事务看待。数据库的事务处理对象是本地事务,而分布式事务处理的对象是全局事务。 所谓全局事务,是指分布式事务处理环境中,多个数据库可能需要共同完成一个工作,这个工作即是一个全局事务,例如,一个事务中可能更新几个不同的数据库。对数据库的操作发生在系统的各处但必须全部被提交或回滚。此时一个数据库对自己内部所做操作的提交不仅依赖本身操作是否成功,还要依赖与全局事务相关的其它数据库的操作是否成功,如果任一数据库的任一操作失败,则参与此事务的所有数据库所做的所有操作都必须回滚。 一般情况下,某一数据库无法知道其它数据库在做什么,因此,在一个 DTP 环境中,交易中间件是必需的,由它通知和协调相关数据库的提交或回滚。而一个数据库只将其自己所做的操作(可恢复)影射到全局事务中。

XA 就是 X/Open DTP 定义的交易中间件与数据库之间的接口规范(即接口函数),交易中间件用它来通知数据库事务的开始、结束以及提交、回滚等。 XA 接口函数由数据库厂商提供。

二阶提交协议三阶提交协议就是根据这一思想衍生出来的。可以说二阶段提交其实就是实现XA分布式事务的关键(确切地说:两阶段提交主要保证了分布式事务的原子性:即所有结点要么全做要么全不做)

2PC与3PC

在分布式系统中,每一个机器节点虽然都能够明确地知道自己在进行事务操作过程中的结果是成功或失败,但却无法直接获取到其他分布式节点的操作结果。因此,当一个事务操作需要跨越多个分布式节点的时候,为了保持事务处理的ACID特性,就需要引入一个称为“协调者(Coordinator)”的组件来统一调度所有分布式节点的执行逻辑,这些被调度的分布式节点则被称为”参与者(Participant)”。协调者负责调度参与者的行为,并最终决定这些参与者是否要把事务真正提交。基于这种思想,衍生出了二阶段提交和三阶段提交两种协议,下面先讲讲二阶段提交和三阶段提交。

2PC

2PC,是Two-Phase Commit的缩写,即二阶段提交,是计算机网络尤其是在数据库领域内,为了使基于分布式系统架构下的所有节点在进行事务处理过程中能够保持原子性和一致性而设计的一种算法。通常,二阶段提交协议也被认为是一种一致性协议,用来保证分布式系统数据的一致性。目前绝大部分的关系型数据库都是采用二阶段提交协议来完成分布式事务处理的,利用该协议能够非常方便地完成所有分布式事务参与者的协调,统一决定事务的提交或回滚,从而能够有效地保证分布式数据一致性,因此二阶段提交协议被广泛地应用在许多分布式系统中。

1、阶段一:提交事物请求

(1)事务询问

协调者向所有参与者发送事务内容,询问是否可以执行事务提交操作,并开始等待各个参与者的响应

(2)执行事务

各参与者节点执行事务操作,并将Undo和Redo信息记入事务日志中

(3)各个参与者向协调者反馈事务询问的响应

如果参与者成功执行了事务操作,那么就反馈给协调者Yes响应,表示事务可以执行;如果参与者没有成功执行事务,那么就反馈给协调者No响应,表示事务不可以执行

由于上面讲述的内容在形式上近似是协调者组织各参与者对一次事务操作的投票表态过程,因此二阶段提交协议的阶段一也被称为”投票阶段”,即各参与者投票表明是否要继续执行接下去的事务提交操作

2、阶段二:执行事务提交

在阶段二中协调者会根据各参与者的反馈来决定是否最终可以进行事务提交操作,正常情况下包含两种可能:

(1)执行事务提交

假如协调者从所有的参与者获得的反馈都是Yes响应,那么就会执行事务提交:

  a)发送提交请求

    协调者向所有参与者节点发出Commit请求

  b)事务提交

    参与者收到Commit请求后会正式执行事务提交操作,并在完成提交之后释放整个事务执行期间占用的事务资源

  c)反馈事务提交操作

    参与者在完成事务提交之后,向协调者发送Ack消息

  d)完成事务

    协调者收到所有参与反馈的Ack消息后完成事务

(2)中断事务

假如任何一个参与者向协调者反馈了No响应,或者在等待超时之后,协调者尚无法接收到所有参与者的反馈响应,那么就会中断事物。

  a)发送回滚请求

    协调者向所有参与者节点发出Rollback请求

  b)事物回滚

    参与者接收到Rollback请求后,会利用其在阶段一中记录的Undo信息来执行事务回滚操作,并在完成回滚之后释放在整个事物执行期间占用的资源

  c)反馈事务回滚结果

    参与者在完成事物回滚之后,向协调者发送Ack消息

  d)中断事物

    协调者接收到所有参与者反馈的Ack消息后,完成事物中断

以上就是二阶段提交过程中,前后两个阶段分别进行的处理逻辑。简单讲,二阶段提交尝试讲一个事物的处理过程分为了投票和执行两个阶段,其核心是对每个事物都采取先尝试后提交的方式,因此也可以将二阶段提交看作是一个强一致性的算法。”事物提交”和”事物中断”两种场景分别如图所示:

2PC的优缺点

1、二阶段提交协议的优点:

原理简单、实现方便

2、二阶段提交协议的缺点,重点讲一下:

(1)同步阻塞

二阶段提交协议存在的最明显也是最大的一个问题就是同步阻塞,这会极大地限制分布式系统的性能。在二阶段提交的执行过程中,所有参与该事物操作的逻辑都处于阻塞状态,也就是说每个参与者在等待其他参与者响应的过程中,将无法进行其他任何操作

(2)单点问题

从上面的讲解以及上图中可以看出,协调者的角色在整个二阶段提交协议中起到了非常重要的作用。一旦协调者出现问题,那么整个二阶段提交流程将无法运转,更为严重的是,如果协调者是在阶段二中出现问题的话,那么其他参与者将一直处于锁定事物资源的状态中,而无法继续完成事物操作

(3)数据不一致

在二阶段提交协议的阶段二,即执行事务提交的时候,当协调者向所有的参与者发送Commit请求之后,发生了局部网络异常或者是协调者在尚未发送完Commit请求之前自身发生了崩溃,导致最终只有部分参与者收到了Commit请求。于是,这部分收到了Commit请求的参与者就会进行事务的提交,而其他没有收到Commit请求的参与者则无法进行事物提交,于是整个分布式系统便出现了数据不一致的现象

(4)太过保守

如果在协调者指示参与者进行事务提交询问的过程中,参与者出现故障而导致协调者始终无法获取到所有参与者的响应的话,这时协调者只能依靠其自身的超时机制来判断是否需要中断事物,这样的策略显得比较保守。换句话说,二阶段提交协议没有设计较为完善的容错机制,任意一个节点的失败都会导致整个事物的失败

3PC

2PC在其实际运行过程中可能存在诸如同步阻塞、协调者的单点问题、脑裂和太过保守的容错机制等缺点,因此研究者在二阶段提交协议的基础上进行了改进,提出了三阶段提交协议。

3PC,是Three-Phase Commit的缩写,即三阶段提交协议,是2PC的改进版本,其将二阶段提交协议的”提交事物请求”过程一分为二,并形成了由CanCommit、PreCommit和do Commit三个阶段组成的事物处理协议,从维基百科上拿一张图下来看一下三阶段提交协议流程示意图,原图地址为https://en.wikipedia.org/wiki/File:Three-phase_commit_diagram.png:

1、阶段一:CanCommit

(1)事物询问

协调者向所有的参与者发送一个包含事物内容的canCommit请求,询问是否可以执行事务提交操作,并开始等待各参与者的响应

(2)各参与者向协调者反馈事务询问的响应

参与者在接收到来自协调者的canCommit请求后,正常情况下,如果其自身认为可以顺利执行事务,那么会反馈Yes响应,并进入预备状态,否则反馈No响应

2、阶段二:PreCommit

在阶段二中,协调者会根据各参与者的反馈情况来决定是否可以进行事务的PreCommit操作,正常情况下,包含两种可能:

(1)执行事务预提交

假如协调者从所有的参与者获得的反馈都是Yes响应,那么就会执行事务预提交。

  a)发送预提交请求

    协调者向参与者节点发出preCommit的请求,进入Prepared阶段

  b)事务预提交

    参与者接收到preCommit请求后,会执行事务操作,并将Undo和Redo信息记录到事务日志中

  c)各参与者向协调者反馈事务执行的响应  

    如果参与者成功执行了事务操作,哪儿就会反馈给协调者Ack响应,同时等待最终的指令:提交(commit)或中止(abort)

(2)中断事物

假如任何一个参与者向协调者反馈了No响应,或者在等待超时后,协调者尚无法接收到所有参与者的反馈响应,那么就会中断事物。

  a)发送中断请求

    协调者向所有参与者节点发出abort请求

  b)中断事物

    无论是收到来自协调者的abort请求,或者是在等待协调者请求过程中出现超时,参与者都会中断事物

3、阶段三:doCommit

该阶段将进行真正的事物提交,会存在以下两种可能的情况:

(1)执行提交

  a)发送提交请求

    进入这一阶段,假设协调者处于正常工作状态,并且它接收到了来自所有参与者的Ack响应,那么它将从”预提交”状态转换到”提交”状态,并向所有的参与者发送doCommit请求

  b)事物提交

    参与者接收到doCommit请求后,会正式执行事务提交操作,并在完成提交之后释放在整个事物执行期间占用的事物资源

  c)反馈事物提交结果

    参与者在完成事物提交之后,向协调者发送Ack消息

  d)完成事物

    协调者接收到所有参与者反馈的Ack消息后,完成事物

(2)中断事物

进入这一阶段,假设协调者处于正常工作状态,并且有任意一个参与者向协调者反馈了No响应,或者在等待超时之后,协调者商无法接收到所有参与者的反馈响应,那么就会中断事物

  a)发送中断请求

    协调者向所有的参与者节点发送abort请求

  b)事物回滚

    参与者接收到abort请求后,会利用其在阶段二中记录的Undo信息来执行事务回滚操作,并在完成事物回滚之后释放在整个事物执行期间所占用的资源

  c)反馈事务反馈结果

    参与者在完成事物回滚之后,向协调者发送Ack消息

  d)中断事物

    协调者接收到所有参与者反馈的Ack消息后,中断事物

需要注意的是,一旦进入阶段三,可能会出现以下两种故障:

  • 协调者出现问题
  • 协调者和参与者之间的网络故障

无论出现哪种情况,最终都会导致参与者无法及时接收到来自协调者的doCommit或者是abort请求,针对这样的异常情况,参与则都会在等待超时之后,继续进行事务提交

3PC的优缺点

1、三阶段提交的优点

相较于二阶段提交协议,三阶段提交协议最大的优点就是降低了参与者的阻塞范围,并且能够在出现单点故障后继续达成一致

2、三阶段提交的缺点

三阶段提交协议在去除阻塞的同时也引入了新的问题,那就是在参与者接收到preCommit消息后,如果出现网络分区,此时协调者所在的节点和参与者无法进行正常的网络通信,在这种情况下,参与者依然会进行事物的提交,这必然出现数据的不一致

而且由于3PC 的设计过于复杂,在解决2PC 问题的同时也引入了新的问题,所以在实际上应用不是很广泛。

了解了2PC和3PC之后,我们可以发现,无论是二阶段提交还是三阶段提交都无法彻底解决分布式的一致性问题。Google Chubby的作者Mike Burrows说过, there is only one consensus protocol, and that’s Paxos” – all other approaches are just broken versions of Paxos. 意即世上只有一种一致性算法,那就是Paxos,所有其他一致性算法都是Paxos算法的不完整版。后面的文章会介绍这个公认为难于理解但是行之有效的Paxos算法。

 

 

此条目发表在设计分类目录。将固定链接加入收藏夹。

发表评论

邮箱地址不会被公开。 必填项已用*标注